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Shaping of a scroll wave filament by cardiac fibers
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Scroll waves of electrical excitation in heart tissue are implicated in the development of lethal cardiac
arrhythmias. Here we study the relation between the geometry of myocardial fibers and the equilibrium shape
of a scroll wave filament. Our theory accommodates a wide class of myocardial models with spatially varying
diffusivity tensor, adjusted to fit fiber geometry. We analytically predict the exact equilibrium shapes of the
filaments. The major conclusion is that the filament shape is a compromise between a straight line and full
alignment with the fibers. The degree of alignment increases with the anisotropy ratio. The results, being purely
geometrical, are independent of details of ionic membrane mechanisms. Our theoretical predictions have been
verified to excellent accuracy by numerically simulating the stable equilibration of a scroll filament in a model
of the FitzHugh-Nagumo type.
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. INTRODUCTION Here® and¥ are the reaction functions; in our notation we
. _ have{x;}={x,y,z}, and sums over repeated indices are un-
The heart muscle, seen as an excitable medium, has corgerstood. The diffusivity tensdd has components, given in

plex geometrical features that affect its electrophysiologicathe next section, that depend on the space coordinates so as
behavior. Prominent among these features is the anisotropy reflect the local fiber direction.

of the constituent fibers. The excitation itself can, in a com- The word “fiber” needs a comment. It is a convenient

mon pathological case, consist of a scroll wave that rotateghorthand for visualizing the geometry, in which the fiber or
about a tubelike self-organizing center known as a filamenfongitudinal direction is that of fastest propagation. On the
[1-3]. The present paper is devoted to the effect of fibelother hand, in our mathematical description, there will be no
shape on filament shape, and is part of a s¢des] dealing  identifiable fibers, but only a local fiber direction; see Fig. 1.
with how and to what extent cardiac geometry governs the |n order to determine the equilibrium configuration of the
configuration of scroll waves, as characterized by their filafjlament, we search for a spatial coordinate transformation
ments. Our focus is on the fibers’ deviation from the straighthat diagonalizes the diffusivity tensor everywhere while
line; in contrast, our earlier work featured rectilinear fiberSavoiding the introduction of convection terms. The purpose
with a twist in their orientation. As we shall see, the filamentis to obtain a new system that supports a Steady_state solu-
responds somewhat differently to those two kinds of geomtjon with a rectilinear filament. The inverse transformation is
etry. Whereas the filament was shown to align with thethen applied, and the straight filament acquires the desired

straight fibers, in the present curvilinear-fiber case it adopts ghape. For an illustration of the end result, see Fig. 2.
compromise between alignment and the straight-line ten-

dency that results from its effective tensi®. The extreme
cases of very weak and very strong anisotropy will produce
rectilinearity and alignment respectively, as one might ex-
pect.

The analysis that follows allows much freedom in the
assumed fiber shape. Nevertheless, the resuland non-
trivial) filament shape, if unique, can be predicted without
approximation. This is unusual in a nonlinear situation in-
volving a spatially distributed system.

Mathematically, the class of media to be considered is
represented by generic modéRitzHugh-Nagumq10,11],
Beeler-Reutef12], Luo-Rudy[13], or others. We use the
standard monodomain formulation, which involves the vari-
ableu (the cells’ transmembrane poteniiaind one or more

other variables«; ,v;,v3, . .. )=v. Their time evolution is FIG. 1. A slab of excitable medium with the fiber shape dis-
given by played as a heavy curve in the plane. All fibers are translated
versions of that prototypical shape, which happens to be sinusoidal
du— 5i(Dij Jj u)+ (D(u,z;) =0, (1) in this illustration. The local fiber slope is defined by the ang(®)

as shown. For application to the heart muscle, we viewztdvas as
.. . the transmural direction, i.e., approximately perpendicular to the
dww+W¥(u,v)=0. (2 adjacent cardiac surfaces.
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Thus, according to the choice of integration constant,(Bx.
represents any fiber in the plane. We then obtain the fiber
geometry of all other planes from parallel translation of the
xz plane in thexy direction. In summary, all fibers in the
medium are versions of the prototype fiber, parallel trans-
lated along any direction contained in the plane; the me-
dium is invariant with respect to this set of translations; for
theoretical purposes it is therefore taken as unbounded in
these two directions.

The diffusivity tensor is most simply described in its di-
agonal form, based on the local fiber orientation,

D giag=diag D ,D1,Dr1). (4)

In the above, corresponding to the subscriptand T, the

t=0 N
}‘\W principal directions are longitudinal, along the local fiber;
F = transverse, in the&z plane perpendicularly to the fiber; and
fiber again transverse, parallel to teaxis. (In the heartD, is
¥
c

=

larger thanD+ by an order of magnitudg.

In order to obtain the diffusivity components in tlgz
o _ ~ frame we apply a rotation about tlyedirection, designed to
FIG. 2. Equilibration of a scroll wave, under different initial achieve the slop& We find (in terms of thex;x,X; nota-

conditions, in the medium of Fig. 1a) Initial template, with fila- tion)
mentF parallel to thex axis. (b) Starting from the configuration of
panel(a), and after about three rotations, the filament has stabilized D,;=D, coa+ Dysirfe,
into a shape fairly similar to that of the fibers shown in Fig(Q.
When differently started, the filame(golid curve evolves toward D,,=Dr,
the same equilibrium state; sequential positions are sh@Wme
dashed curve represents a typical fipgkt t=0 the filament is D3s=D, sirfa+ Dy cosa, (5)
sinusoidal in thexy plane. Its approximate plane gradually tilts
(arrow) to match the plane of the fibers at equilibriurh i in D1,=D,;=D,3=D3,=0,
seconds In summary, in our numerical experiments, no matter how
the filament is started, its equilibrium shape is the same; however, D3=Dg=(D, —Dy)cosa sina,
this shape never quite coincides with the fiber's shape even in the
large-time limit. with o= a(x) obtained from
The purely geometrical nature of the method yields a pre- tana=S (6)

diction that is independent of the properties responsible for
the medium’s excitable behavior. This circumstance conferksee Eq(3)]. In Dj; we therefore have
wide generality to the calculation. Further on in this article, 2 2
the theory’'s validity is confirmed numerically in three di- cosa=1/(S°+1),
mensions. The wave is started with a simple but otherwise SN PPy
arbitrary shape for its filament, and settleslc,J quickly into its sifa=S/(S+ 1), @)
steady-state mode. All our simulated steady-state scrolls not sina cosa=S/(S?+1)
only agree with the analytic results, but display excellent '
stability as well, a feature concerning which the theory hasthys we see that the fibers themselves will not enter the
nothing to say. mathematics; only their local direction, given I8y is rel-
evant.
Il. GEOMETRY OF THE MODEL

A. The medium B. The wave and filament

As illustrated in Fig. 1, the prototype fiber is contained in ~ While the medium is constructed to be translationally in-
the xz plane; the fiber is given for later convenience by wayYarant in both they and z directions, neither of these two
of its local slopeS(x), assumed to be a finite single-valued InvVariances is postulated for the excitation wave. Rather, we
deal with a genuinely three-dimensional problem in a cube of
sidesAx=Ay=Az=L.
The mathematics of this article presupposes the existence
Zfibel(x):f S(x)dx. (3 of a unique solution for the scroll wave, up to an overall
translation parallel to thgz plane. Accordingly, the bound-
All fibers in the xz plane are assumed to be obtained fromary conditions for the propagating variahlavill play a sub-

parallel translation of the prototype in thez direction.  stantive role. For definiteness we assume a single filament

function. Thus we set
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that enters and leaves the cube throughxke andx=L coordinate axes, the diagonalization condition can be accom-
faces; but uniqueness requires more detail. We can see thalished by other than a pure rotation if we allow the eigen-
in the hypothetical case of a uniform medium, infinite in all values to become formally dependent 0f1Y,Z). The con-
directions, including thex direction, uniqueness will break dition of no transverse convection will determine which
down: the(rectilineay filament can adopt any direction. diagonalization process to choose.

Our choice for avoiding this kind of indeterminacy is to ~ We consider candidates from the following class of trans-
enforce zero-flux boundary conditions across those twdormations &,y,z)—(X,Y,Z):
planes. Explicitly, considering any poift on a boundary,
and ifn={n;,n,,n,} is a vector normal to that boundary at X=X, Y=y,
P, then we require

S X
nD;jd,u=0 ®) z=z—f f(S)dSzz—f f(9)S' (x)dx, (10

atP. In the present case we take-{1,0,d, so that Eq(8)  where the functiorf is as yet undetermined. This working
reads assumption, which severely restricts the set of available
transformations, is motivated in part by the simplicity of
what follows, but ultimately by the fact that it will lead to the
appropriate diagonalizatiod. [We observe that a naive
raightening of the fibergs,=z— [S(x)dx, cf. Eq.(3), al-
ough inappropriate, is similar to E(L.0) in regard to sepa-
ration of coordinate$With Egs.(10), the partial derivatives
now read

Dljé?ju=0 (X=O,L). (9)

In all the following theory and simulations we shall make N
that assumption. The boundary conditions at the remainin§n
four cube faces will be ignored in the analytical work. That
is, the medium is deemed to be effectively infinite in thg
and =z directions. Simulations must, of course, implement
this with a large en_ough cube size. o 0=k~ 1S (X)dz, dy=dy, =07, (11)

As regards the filament, we shall define it in terms of the
variablesu andv in Egs. (1) and(2). We plot the instanta- where the prime denotes the ordinary derivative.
neous intersection of chosen contours for two variables, say We next look at the complete diffusion operator in Eq.
u andv,, thus obtaining a periodically shifting curve that (1). In the XY Z system, this operator can be written generi-
delineates a narrow filament tube over time. cally as

lll. A SPECIAL DIAGONALIZATION ﬁi(DiJ"91'):AXX‘7§<+AXZ&X‘?Z+AZZ‘7%+AYY’9$+ Bxdx

Let the diffusion operator in Eq.l) be written in “ex- +Bzdz. (12)
pliCit” form as &i(Dijaj)=Dij&i&j+Ei¢9i for some Eiv
where E;g; is the convective part of the operator. We look
for a transformationT of the spatial coordinatesx({y,z)
—(X,Y,2) such thata) the diffusivity tensor becomes diag-
onal, and(b) the explicit transformed operator has no con-
vective terms in the transverse directio¥fsor Z, i.e., no
terms of the formPdy or Qdz. Such terms are known to Ay,=0, B,=0. (13)
cause a drift of the filament7,14, and references thergin
and thus are incompatible with the steady state. If convectioBy inserting Eqs(11) into 4;(D;;d;), we obtain the coeffi-
is absent, and because of the new medium’s symmetriegents in Eq.(12). Specifically, we have
about theX axis, we expect the existence of a stationary
scroll with a rectilinear filament in th¥ direction. For weak
enough curvature of the fibers, the existence of that scroll is ~ Axz=
guaranteed by continuity. Indeed, with straight fibers we

[In consequence of the particular spatial dependence set out
in Eq. (5), there is nady term, and we still havé\yy=D+.]

In general, theA and B coefficients are expected to depend
on position; as mentioned previously, however, we need to
determinef(S) so as to enforce

52+1[_(DL+ D:S%)S'f(S)+ (D —D1)S].

have uniform anisotropy, which is known to support a (14
straight filament. For strongg{and ;ometimes very strong Requiring this to vanish yields
curvatures, our computer simulations still demonstrate the
existence of the expected scroll. _
. - . (D.—-D7)S

Naively, the problem might seem trivial. We have ob- (= ——S—= (15
tained the actual diffusivity tens@8) from its diagonal form (DL+DS9)S
(4) through a local rotation. Why not simply invert that ro- . e .
tation? The main reason is that it cannot usually be don&' €ISe the trivial cas&=S"=0. Similarly, we have
even in principle. Although a diffusion tensor can be locally
rotated, a coordinate system in general cannot: two neighbor- _
ing local rotations are in general incompatible. 2+1

On a less abstract level, we note that, although &j.
with physical eigenvalues, is unique apart from exchanges ofthere
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R=—(D_+D:S$?)S'f(S)+(D_—D1)S, (17) a constructive definition of a stationary filament. Rectilinear-
ity and theX direction are simultaneously deduced from the
proportional toAyz, Eq. (14). Remarkably, therefore, we symmetries of the transformed medium and from the postu-
find R=0, orB;=0. Thus, the transformations of ty§&0) late that the equilibrium shape and orientation of the filament
have the desirable property that, together with the diagonalare unique. Readers may wish to skip these mathematical
ization requiremeniAy,=0, they automatically ensure the preliminaries and go over directly to the second part of the
absence of convection terms perpendicular toXrexis. In  section, where we obtain the actual filament shape by means
summary, Eq(12) has the surviving terms of the inverse transformation back to the original coordinate

system.
ﬁi(Dij&j):AXXa)z(—’_AZZa%—’_ DT&$+ th?x, (18)

where all coefficients are independentYofindZ. This for- A. A unique rectilinear filament in XYZ space
mula is as far as we shall need to carry the diagonalization
procedure. For completeness we nevertheless list the explic(ijt
is
forms of Axx, Azz, andBy:

From the new medium’s symmetry about tKeaxis, as
played in Eq(18), the filament in theXY Z system might
be expected intuitively to be rectilinear and in tedirec-
tion. However, the actual filament may have a complicated

2
Xx:w’ and spatially variable cross section due to the residual
S+1 dependence of the medium, and, in addition, it may exhibit
helical features due to the scroll's chirality. We now con-
D D(S?+1) struct a filament axis that does indeed turn out to be linear
2775 (19 and in theX direction.
D.+DrS From Egs. (18 and (20), the medium, including its
boundary conditions, is invariant under each reflection
__2(b.—Dy)SS ——Y andZ——Z, as well as under all translations in the
X (S?+1)2 Y Z plane. We shall be interested in the effect of these trans-

formations on the filaments of scroll wave solutions that are
To conclude this section we must address the boundargeriodic in time, and whose existence we postulate.
conditions in theXY Zmedium. We have eliminated anyor As a help in constructing the filament tube, we assume
Z dependence in the transformed diffusivity componentsthat when a scroll is sectioned parallel to tH& plane the
Therefore any residual perturbation in a lateral directionresult is a spiral that rotate@ot necessarily rigidlyin a
would have to be caused by the boundary conditions, in parelockwise (CW) or counterclockwisg§ CCW) direction ac-
ticular Eq.(9). With the help of Eqs(5) and(7), that condi- cording to some convention, thus defining two classes, the
tion reads CW and CCW scrolls. For any scroll, a filament tube can
now be constructed on the basis of two selected variables,
[(D_+D1S)dx+ (D —Dr)S3,]u=0. (200 sayuandv;. At any given time and in any giveviZ section,
we define a poinf that is the intersection of two contour
linesu=pu,v;=v (1 andv are chosen constantd et C be
the spatial orbit ofF over a complete cycle. We similarly
construct the corresponding, with the sameu and v, in
everyY Z section, and regard the combined set of all closed
du=0 (X=0,L), (21) curvesC as the filament Fube. By construction, this tube is of
course independent of time.
symmetric in the transverse directions. In summary, the Before we proceed to derive the filament shape, a further
usual fiber-adapted no-flux conditions in the actupr sys- ~ assumption is needed: If the direction of rotation, CW or
tem preserve th¥ andZ symmetry of the conditions iXYz ~ CCW, as well as the “filament labels", v) are given, then
space, at least along the boundary plaXes0,L. the filament tube is unique up to translations in ¥&plane.
The same cannot be said of no-flux conditions at the latThe consequences of doing without that assumption are
eral boundariegalong Y=const orZ=const). Instead we taken up in Appendix B. o .
theoretically assume a medium infinite in tieand Z direc- We now improve the characterization of the filament by
tions; in simulations we must then set up the scroll wavedoing over from filament tube to filament axis. Consider, for
with its filament “not too close” to the lateral boundaries; €xample, a CW filament tube, and apply the combined re-
experience shows that one or two scroll windings amount tdlectionsY——Y,Z——Z. The result is still a CW filament

After applying transformatiorill) we find that thej, coef-
ficient is again proportional té&\y, in Eq. (14), and thus
vanishes, while th&@y coefficient is nonzero. This leaves us
with

a safe distance. tube, and from the uniqueness assumption it follows that we
now have recovered the original filament tube, but translated
IV. SHAPE OF THE EILAMENT in theY Z plane. The translation vector depends on where the

origin of theY Z plane is located relative to the original tube.
In this section we first demonstrate that, based on théor example, if that origin lies within the tube, the amount of
form (18), the filament in theX'Y Z system is indeed rectilin- translation is expected to be very small. We now shiftthe
ear, in theX direction, and stationary. To that end we presentorigin (two free parameteysuntil the two-dimensional trans-
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lation vector vanishes. The neaxis is then defined to be 2
the filament axis. In summary, the filament axis is a line ®©
parallel to theX axis, such that a centralZ reflection about [ 16
it reproduces the filament tube without translation. Our con-
struction has demonstrated the existence of the filament axis.

B. Filament shape inxyz space

In order to return to the originalyz system, we select a
(necessarily rectilinearfilament axis, sayy=2=0. Equa-
tions (10) then yield the desired filament shape,

S filament

S X
Yiilament= 0 Zilament™ j f(S)dS= f f(9)s'dx, (22

where the functiorS= S(x) is considered given. Explicitly,
from Eq. (15), we have

Sdx 0 4 8 12
(23) S

FIG. 3. Filament slope against fiber slope for different anisotro-
This formula, which concludes our mathematical analysispPies according to formulg24). With increasing anisotropy, the lo-
predicts the shape of a curved filament “axis” in a mediumc?‘l filament slope increases. Points a apd b refer_to the results of
whose fiber is given by E¢3). A more intuitive version of Fi9. 5 further on. The curve labeled<" is where filament and
Eq. (23) displays the filament's sI0pByamenin terms of the ~ fIPer slopes coincide.
fiber's slope S and the inverse anisotropy ratig

X
Zitamen= (D — D )J _—
filament L T D . + DTSZ

=D;/D, (0<p<1): FitzHugh-Nagumo-type model whose details are set out in
Appendix A.
1 In Figs. 2A) and ZB) we show how the scroll evolves
Shiament= _) : (24) from rectilinear at initiation to a shape rather similar to that
1+pS? of the fibers. Pan&lA) shows the initial scroll with its rec-

tilinear filament. This configuratio¢stable in uniform isotro-

We have here the central result of our work, stating that th@ic media becomes unstable when the fibers are curved.
filament adopts a local slope that is always less than that dPanel(B) shows the scroll after the filament has reached an
the fiber. Therefore Eq24) implies that the filament has an equilibrium determined by the fibers of Fig. 1.
overall shape which is a compromise between that of the Figure ZC) displays the equilibration process for another
fiber and thex axis. (The x axis configuration would be the choice of initial conditions. Unlike the scenario that begins
filament shape in a uniform isotropic mediup¥= 1, under in Fig. 2(A) with a straight filament and takes place entirely
our no-flux boundary conditions at=0,L.) In the limit  within thexz plane, here the initial filament is chosen to be a
D, /Dy—x~ (p=0), the filament approaches the fiber in curve that resides in thgy plane. After about 1.5 scroll
terms of shape and orientation. The dependence¥Qfen:  rotations ¢=0.1 in the figure, the approximate plane of the
on Sand onp are separately of considerable interest, and aréilament is already seen to be substantially rotated as well. It
plotted in Fig. 3. For each value pf the nonmonotonicity as continues to rotate toward the plane of the fibéise xz
a function of S should be noted. It allows us to predict that, plang, along which it stabilizes with the same stationary
where the fiber is steep enougdt the right of the pegkthe  filament configuration as in Fig.(B), in accordance with
filament will follow the fiber less closely as the fiber slope theory.
increases. Figure 4 illustrates the earlier-mentioned effect of the an-

The uniqueness of the solution has played a role in ouisotropy D, /Dt on the degree of alignment. Equati(2y),
derivation. Genuine cases of honuniqueness may in principlehen written in terms of the inverse of that ratio, shows a
exist, however. For example, the filament shape could bifurfiber-filament alignment that improves with increasing
cate into a pair of possibilities, both different from Eg3). D_/D+. The left panel of Fig. 4 shows the analytical fila-
One member of the pair is then predictable in terms of thenent solutions for three anisotropy ratigs, 9, and 4 the
other, as we show in Appendix B. We have seen no sucligher the anisotropy, the closer the alignment. We now se-
occurrence in our simulations. lect a fiber whose averagecoordinate is equal to that of the
filament. The maximal deviatioA between filament and fi-
ber is then taken as a measure of misalignment. In the right
panel we plotA as a function of the anisotropy to demon-

The predictions of Eq(23) are confirmed by the numeri- strate how alignment improves with anisotropy. The compu-
cal simulations of stable scrolls. These are based on tational results are superimposed for comparison. Under

V. NUMERICAL ILLUSTRATIONS
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15 5
— theory
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A x (mm) B Anisotropy (D, /D)

FIG. 4. Effect of increasing the anisotropgy Analytical solutions(solid curve$ for three different anisotropy ratios; the dashed curve
is the fiber shape. As the anisotropy ratio increases from 4 to 16, the alignment improves, decreasing the difdyetveeen the
amplitudes of fiber and filamentb) The differenceA, as a function of the anisotropy ratld, /D+. The numerical result&ircles for
D, /D=4, 9, and 16 are seen to coincide with the predicficurve. Full alignment A =0) is predicted in the strong-anisotropy limit
DL/DT—>OO.

strong anisotropy, as in cardiac muscl®, (D;=9), a the medium is not too low, filaments “attempt” to minimize
rather good alignment should prevail everywhere. their length as though they were under mechanical tension
The excellent agreement between theory and numericgBb]. When the fibers are curved, these two tendencies are
solution is demonstrated in Fig. 5 for different fiber shapesincompatible, and Fig. 5 displays a clear compromise be-
In each of these three cad@anels(A), (B), and(C)] we plot  tween them. The degree of anisotropy tilts the balance one
the stationary filament from the numerical scroll wave simu-way or the other, and, as implied by formu24), an infi-
lation, and trace for comparison the analytically predictechijtely strong anisotropyD, /D— vyields perfect align-
filament, as well as one layer of the actual fibers. Note thagnent.
the alignment is less perfect for segments with extreme How generally should we expect the present results to
slope. This circumstance finds its explanation in the nonhold? Our argument is purely geometrical and distinct from
monotonic curves of Fig. 3, where we plot the theoreticakhe specific ionic mechanisms of excitation. Therefore the
filament slope against the fiber slope for various degrees afhoice of membrane model is not critical to the validity of
anisotropy. The small bumps exhibited in the inset of Fig.our results. The time-dependent details of the approach to
5(B) are a special confirmation of the theory. Pa(@) of  equilibrium do, however, depend on the specifics of the
Fig. 5 illustrates a medium with piecewise linear fibers. Thismodel and may vary with its parameters. That time depen-
unphysiological shape, with its sharp corners, puts the theoryency is interesting in it own right, and in general can be
to a severe test. Nevertheless, and remarkably, the simulat@shrned only from numerical simulations as of now. Al-
scroll rotates around a piecewise linear filament completghough the theory leads to a well-defined equilibrium con-
with sharp corners. The curvature at these corners is q’iguration’ it has, in its present form, nothing to say about
course not well defined for either the fiber or the filament. stability, which may well be model dependefin the nu-
merically tested cases the stability has been excellent.
We now turn to some cardiological considerations. Scroll
waves are considered a major mechanism of severe ventricu-
The major result of this study is that the filament of alar arrhythmias[1-3,15-18. Unfortunately, owing to the
scroll wave tends to align with the fibers in the excitablelimitations of present techniques, scrolls are very poorly
medium and that, for given boundary conditions, the degreélocumented in living tissue as far as their three-dimensional
of alignment depends on the anisotropy ratio in a quantitaerganization is concerned. Here we have supplied analytical
tively predictable manner. Analytically, this result amountsand computational evidence to guide our expectations.
to the pair of equation$3) and (23), which prescribe the The approximate alignment that our studies have found
shape of a scroll filament in a given fiber configuration of theunder a wide range of conditions is one way to understand
medium. The numerical illustrations of the preceding sectiorthe relatively rare observation of sustained spiral waves on
are in excellent agreement with that theory, sometimes to ¢he ventricular epicardium. The spirals would be nothing but
striking degree, as when the fibers involve sharp corners. short-lived manifestations of transmurahther than intra-
Partial alignment can be expected from the followingmural, i.e., fiber-alignedscrolls[19—21. Such an interpre-
qualitative argument. On the one hand, it was found in thdation is consistent with quite a number of multiple-electrode
case of twisted anisotrop}6,14] that rectilinear filaments studies[22—24,17,18 and would confirm the likely role of
move into alignment with théectilineay fibers; on the other scroll waves in the maintenance of cardiac arrhythmias. Al-
hand, under isotropic conditions, and when the excitability ofternatively, a possible instability of the scroll its€tather

VI. DISCUSSION
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Smax = 2 Smax = 10

C x (mm)

FIG. 5. Theoretical and simulated filaments for different fiber shapes, allbyittb +=9. (Curves and points have the same meaning as
in previous figures.The small bumps visible in the inset @) but not of(a) are due to the nonmonotonicity of the curves in Fig. 3; points
a and b in the earlier Fig. 3 refer to the present insets. As the fib@) igoes through its steepest region, its slope of around 10, plotted
horizontally in Fig. 3, goes back and forth through the peak region. In contrast, the sl@@éhas maximum value 2, and therefore never
becomes steep enough for a crossing of the peak region. The bumps, while far from spectacular in themselves, are the only fine structure we
see in an otherwise smooth landscape, and thus they are a powerful confirmation for the theory. Note the excellent agreement between
simulations(circles and theory(solid curve$. Panel(c) displays the remarkable persistence of this agreement even when the fibers are
(unphysiologically piecewise linear. In(c), the filament was started as a horizontal linezat7.5 mm, but has drifted substantially
downward before stopping at its final location. This phenomenon, which in no way conflicts with our theory, is permitted by the asymmetry
of the fibers with respect to a 180° rotation in theplane.

than the orientation of its filaments emphasized ifl]. Zibe X) =A sin(2mx/L), (A1)
In earlier computer simulations using a realistic whole-

heart model, some of U&5] have demonstrated the presencewherel is the size of the slab ari=5 mm.

of stable filaments curled around the ventricular apex and (2) Hyperbolic-tangent shaped fibers,

following the gross anatomical fiber directipp6—2g. The

present study provides an explanation for such configura- Ziped X) = A tanhk(x—L/2), (A2)

tions. whereL andA are as in Eq(Al) andk is used to adjust the
slope.
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APPENDIX A: THE MODEL ZibedX) =) L (A3)
. . A
We simulate a 1%15x15 mn? ventricular free-wall —(x—4a) for 2a<xsL,
slab with curved fibers parallel to each other. The fibers’ L
shape is obtained by varying their slope anglealong x. \
Three different geometries are used. whereA andL are the same as in the sine wave fibers, and
(1) Sine-wave shaped fibers, a=L/3. The construction of the slab consists of obtaining
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analytically the slope§(x) of the fibers and the angle(x), APPENDIX B: NONUNIQUE SOLUTIONS
and then rotating the diffusion tensbras described by Eq. . .
(5). Our simulations have not demonstrated any cases of

The action potential is simulated using FitzHugh-Nagumononun'queness’ even if the fibers deviate strongly from the

(FHN) type equations in the form described by E€§.and straight I_ine. However, since_ uniqueness was an important
. > L o assumption of Sec. IV, and since an anomalous equilibrated
(2) with a one-element=uv, ¥ ="V (see also Re{29)); uis  fijament may correspond to alternative and unsuspected ba-

the transmembrane potential ands the variable that con-  ging of attraction relative to initial conditions, we devote this
trols the currents. The reaction functionB(u,v) and  Appendix to the hypothetical situation where the uniqueness

¥ (u,v) are assumption breaks down. In that case &3 can no longer
be expected to hold. Instead, the filament should have an
v+20u for u<ug, “anomalous” shape; we shall see that anomalous filaments
_ ) v=3u+0.15 for u;<u<u,, must occur in pairs. While we give n@ priori calculation
O (uv)= (A4) for both members of the pair, we doontrivially) predict
v+15u—1) for u,<u. one member exactly when the other is known.

The discussion is most conveniently conducted from
within the symmetricXY Z system, as obtained through
(v=3uw/5  for u<uy, transformatior(10), with S(x) still equal to the fibers’ slope,
(v—3u)/15 for uy=<u<u,, (A5) Eq. (3). We ask what happens when, in the symmexiz
(v—3u)/5  for u,=<u. system, the equilibrium filament tube is no longer axially
symmetric around any line parallel to tbeaxis. (Such a
spontaneously broken symmetry could arise when the sta-

For the continuity of the piecewise linedr(u,v) we set tionary symmetric solution is unstable or nonexisteBie-

W(u,v)=

u,=0.15/23 andi,= 15.15/18. cause theXY Zsystem is itself symmetric, a double reflection
We impose no-fluxhomogeneous Neumanmoundary Y— —Y,Z——Z will turn the nonsymmetric filament tube

conditions of the form into another physically realizable one, with a distinct re-
flected shape. Hence, going back to ez system, we ob-

niDjj3,u=0 (AB) tain two different possible filament shapes, neither of which

follows Eq.(23). More generally, we see that nonunique fila-
ments will occur in pairgwith, in addition, the solution of

Eqg. (23) if available]. In what follows we pursue in some
detail the question of predicting the exact shape of the sec-
Bnd possible filament when the first one has been measured.
We keep in mind the practical diagnosis for nonuniqueness:
when the observed equilibrium filament violates E28), we

[in the notation of Eq(1)], where then; are the Cartesian
components of the unit vectar, normal to thexy, xz, and
yz boundary planes. Thus, in component form, the boundar
conditions read

D11dxu+D1ad,u=0  (x=0L), (A7) are led to search for its counterpart.
To reach an explicit formula, we start from a steady-state
du=0 (y=0L), (A8)  scroll wave solution/={u,v} in the original system, and
assume that it has the coordinate dependeri¢e
DaydU+Dagdu=0 (z=0L). (A9) =U(x,y,z,t). We also assume that its filament does not obey

Eqg. (23). Therefore we look for a second, different, steady-
state scroll/* =U/* (x,y,z,t), obeying the same propagation
equations, with the same diffusivity tensor and boundary
conditions. We now determin* when/ is known. The
method is to apply three successive transformatiorig. to

(a) Going over to the symmetriXY Z system, gives the
transformed function

The initial wave is chosen by way of template functions
u(x,y,z),v(x,y,z). For simplicity, the initial filament is rec-
tilinear and parallel to the axis in all cases except in Fig.
2(C), where it is sinusoidal and lies in they plane. It is
always positioned in the middle of the slab.

We integrate the set of Eg€l) and(2) using the explicit
Euler method. All derivatives are calculated as standard cen-
tral differences. The lattice size is B®0X 60 elements. The
model is scaled to achieve a physiologically reasonable
propagation velocity of 0.5 m/gn the fastest directionand
a rotational period of about 70 ms. In the majority of simu-
lations, the spatial discretization stephs-0.2 in all direc-
tions and the time ste@t=0.01. Both values are close to
those normally used in FHN simulatiof30,31. In dimen-
sional units, they correspond to 0.25 mm and 0.047 ms, re-
spectively. The convergence of the numerical solutions has X ,
been tested in control runs with a refined meshsf0.1 and uHX’Y’Z’t):u(X’_Y’_Z“LJ f(9)S (X)dX,t).
At=0.0025. (B2)

Z/lT(X,Y,Z,t)=Z/{(X,Y,Z+ jxf(S)S’(X)dX,t); (B1)

see Eq(10).
(b) Applying the reflectionsY— —Y,Z— —Z will give
another, distinct, solution
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(c) Transforming back to theyz system, again using Eq. case. However, we can use some other recipe like a time
(10 and then Eq(15) gives average of the poirf that describes the filament tube at all
fixed values ofX.)

Suppose the first anomalous shape is given parametrically

X
= — J— + !
wxyzh=tx-y.-z Zf (SS (dxt in x by the functionsysiamen(X) and Zgamen{X), Where we
note that the filament is no longer necessarily confined to the
Ul x,—y,—z+ ZJ'X(DL_DT)SdX ) xz plane. Then, directly from EqB3), we have
DL+D&" Yiitament X) = — Yiilamen{ X)
llamen 1
(B3) llamen
The above is the explicit construction of the second solution * __ (DL —Dy)Sdx
Uur. Zfilamenﬁx) - Zfilamenﬁx) + ZJ’ D|_+ D-|-52 (B4)

The corresponding anomalous filament shape is obtained
as follows.(Here we can no longer use the symmetry prop-These starred functions give the second anomalous filament
erty that defined a filament line—th¢ axis—in the unique explicitly in terms of the first.
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